Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.

Identifieur interne : 000778 ( Main/Exploration ); précédent : 000777; suivant : 000779

'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.

Auteurs : Matjaz Hren [Slovénie] ; Petra Nikoli ; Ana Rotter ; Andrej Blejec ; Nancy Terrier ; Maja Ravnikar ; Marina Dermastia ; Kristina Gruden

Source :

RBID : pubmed:19799775

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'.

RESULTS

We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan). The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable classification of infected plants and for the characterization of susceptibility features in the field conditions.

CONCLUSION

This study revealed some fundamental aspects of grapevine interactions with the stolbur 'Bois noir' phytoplasma in particular and some plant interactions with phytoplasmas in general. In addition, the results of the study will likely have an impact on grape improvement by yielding marker genes that can be used in new diagnostic assays for phytoplasmas or by identifying candidate genes that contribute to the improved properties of grape.


DOI: 10.1186/1471-2164-10-460
PubMed: 19799775
PubMed Central: PMC2761425


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.</title>
<author>
<name sortKey="Hren, Matjaz" sort="Hren, Matjaz" uniqKey="Hren M" first="Matjaz" last="Hren">Matjaz Hren</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Biology, Department of Biotechnology and Systems Biology, Vecna pot 111, 1000 Ljubljana, Slovenia. matjaz.hren@nib.si</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>National Institute of Biology, Department of Biotechnology and Systems Biology, Vecna pot 111, 1000 Ljubljana</wicri:regionArea>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nikoli, Petra" sort="Nikoli, Petra" uniqKey="Nikoli P" first="Petra" last="Nikoli">Petra Nikoli</name>
</author>
<author>
<name sortKey="Rotter, Ana" sort="Rotter, Ana" uniqKey="Rotter A" first="Ana" last="Rotter">Ana Rotter</name>
</author>
<author>
<name sortKey="Blejec, Andrej" sort="Blejec, Andrej" uniqKey="Blejec A" first="Andrej" last="Blejec">Andrej Blejec</name>
</author>
<author>
<name sortKey="Terrier, Nancy" sort="Terrier, Nancy" uniqKey="Terrier N" first="Nancy" last="Terrier">Nancy Terrier</name>
</author>
<author>
<name sortKey="Ravnikar, Maja" sort="Ravnikar, Maja" uniqKey="Ravnikar M" first="Maja" last="Ravnikar">Maja Ravnikar</name>
</author>
<author>
<name sortKey="Dermastia, Marina" sort="Dermastia, Marina" uniqKey="Dermastia M" first="Marina" last="Dermastia">Marina Dermastia</name>
</author>
<author>
<name sortKey="Gruden, Kristina" sort="Gruden, Kristina" uniqKey="Gruden K" first="Kristina" last="Gruden">Kristina Gruden</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19799775</idno>
<idno type="pmid">19799775</idno>
<idno type="doi">10.1186/1471-2164-10-460</idno>
<idno type="pmc">PMC2761425</idno>
<idno type="wicri:Area/Main/Corpus">000745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000745</idno>
<idno type="wicri:Area/Main/Curation">000745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000745</idno>
<idno type="wicri:Area/Main/Exploration">000745</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.</title>
<author>
<name sortKey="Hren, Matjaz" sort="Hren, Matjaz" uniqKey="Hren M" first="Matjaz" last="Hren">Matjaz Hren</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Biology, Department of Biotechnology and Systems Biology, Vecna pot 111, 1000 Ljubljana, Slovenia. matjaz.hren@nib.si</nlm:affiliation>
<country xml:lang="fr">Slovénie</country>
<wicri:regionArea>National Institute of Biology, Department of Biotechnology and Systems Biology, Vecna pot 111, 1000 Ljubljana</wicri:regionArea>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nikoli, Petra" sort="Nikoli, Petra" uniqKey="Nikoli P" first="Petra" last="Nikoli">Petra Nikoli</name>
</author>
<author>
<name sortKey="Rotter, Ana" sort="Rotter, Ana" uniqKey="Rotter A" first="Ana" last="Rotter">Ana Rotter</name>
</author>
<author>
<name sortKey="Blejec, Andrej" sort="Blejec, Andrej" uniqKey="Blejec A" first="Andrej" last="Blejec">Andrej Blejec</name>
</author>
<author>
<name sortKey="Terrier, Nancy" sort="Terrier, Nancy" uniqKey="Terrier N" first="Nancy" last="Terrier">Nancy Terrier</name>
</author>
<author>
<name sortKey="Ravnikar, Maja" sort="Ravnikar, Maja" uniqKey="Ravnikar M" first="Maja" last="Ravnikar">Maja Ravnikar</name>
</author>
<author>
<name sortKey="Dermastia, Marina" sort="Dermastia, Marina" uniqKey="Dermastia M" first="Marina" last="Dermastia">Marina Dermastia</name>
</author>
<author>
<name sortKey="Gruden, Kristina" sort="Gruden, Kristina" uniqKey="Gruden K" first="Kristina" last="Gruden">Kristina Gruden</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glycolysis (genetics)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Phytoplasma (physiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>Vitis (genetics)</term>
<term>Vitis (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glycolyse (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Métabolisme glucidique (génétique)</term>
<term>Photosynthèse (génétique)</term>
<term>Phytoplasma (physiologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Vitis (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Glycolysis</term>
<term>Photosynthesis</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Feuilles de plante</term>
<term>Glycolyse</term>
<term>Maladies des plantes</term>
<term>Métabolisme glucidique</term>
<term>Photosynthèse</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytoplasma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gènes de plante</term>
<term>Interactions hôte-pathogène</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan). The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable classification of infected plants and for the characterization of susceptibility features in the field conditions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This study revealed some fundamental aspects of grapevine interactions with the stolbur 'Bois noir' phytoplasma in particular and some plant interactions with phytoplasmas in general. In addition, the results of the study will likely have an impact on grape improvement by yielding marker genes that can be used in new diagnostic assays for phytoplasmas or by identifying candidate genes that contribute to the improved properties of grape.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19799775</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.</ArticleTitle>
<Pagination>
<MedlinePgn>460</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-10-460</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan). The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable classification of infected plants and for the characterization of susceptibility features in the field conditions.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study revealed some fundamental aspects of grapevine interactions with the stolbur 'Bois noir' phytoplasma in particular and some plant interactions with phytoplasmas in general. In addition, the results of the study will likely have an impact on grape improvement by yielding marker genes that can be used in new diagnostic assays for phytoplasmas or by identifying candidate genes that contribute to the improved properties of grape.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hren</LastName>
<ForeName>Matjaz</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Biology, Department of Biotechnology and Systems Biology, Vecna pot 111, 1000 Ljubljana, Slovenia. matjaz.hren@nib.si</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nikolić</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rotter</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blejec</LastName>
<ForeName>Andrej</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Terrier</LastName>
<ForeName>Nancy</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ravnikar</LastName>
<ForeName>Maja</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dermastia</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gruden</LastName>
<ForeName>Kristina</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045582" MajorTopicYN="N">Phytoplasma</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19799775</ArticleId>
<ArticleId IdType="pii">1471-2164-10-460</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-10-460</ArticleId>
<ArticleId IdType="pmc">PMC2761425</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):652-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2004 Apr;198:267-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Feb;14(2):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11204786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Oct;2(10):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2136626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2004 Apr;22(4):168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15038921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2005 Dec;24(12):832-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jun;190(11):3979-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(10):3682-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2007;12:1353-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Nov;17(11):1175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15553243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2398-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2008 Sep;12(3):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18771401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):759-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Nov;10(11):526-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Dec;93(12):1505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18582369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Mar;10(2):263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 Jan;44(1):58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 15;23(20):2700-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):832-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2007;12:673-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):236-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 May;13(5):981-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Aug;93(8):976-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Jan;36(1):27-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:393-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 May;8(3):307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16807822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jul;66(7):2853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10877778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8685267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2004 Nov;36(11):773-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15514852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Slovénie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Blejec, Andrej" sort="Blejec, Andrej" uniqKey="Blejec A" first="Andrej" last="Blejec">Andrej Blejec</name>
<name sortKey="Dermastia, Marina" sort="Dermastia, Marina" uniqKey="Dermastia M" first="Marina" last="Dermastia">Marina Dermastia</name>
<name sortKey="Gruden, Kristina" sort="Gruden, Kristina" uniqKey="Gruden K" first="Kristina" last="Gruden">Kristina Gruden</name>
<name sortKey="Nikoli, Petra" sort="Nikoli, Petra" uniqKey="Nikoli P" first="Petra" last="Nikoli">Petra Nikoli</name>
<name sortKey="Ravnikar, Maja" sort="Ravnikar, Maja" uniqKey="Ravnikar M" first="Maja" last="Ravnikar">Maja Ravnikar</name>
<name sortKey="Rotter, Ana" sort="Rotter, Ana" uniqKey="Rotter A" first="Ana" last="Rotter">Ana Rotter</name>
<name sortKey="Terrier, Nancy" sort="Terrier, Nancy" uniqKey="Terrier N" first="Nancy" last="Terrier">Nancy Terrier</name>
</noCountry>
<country name="Slovénie">
<noRegion>
<name sortKey="Hren, Matjaz" sort="Hren, Matjaz" uniqKey="Hren M" first="Matjaz" last="Hren">Matjaz Hren</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000778 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000778 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19799775
   |texte=   'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19799775" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020